▲國邊光 第16卷 第11期

费佐干涉仪脉冲波长计的研究

沃敏政 孙海音 张哨峰 梁培辉 (中国科学院上海光机所)

Study on wavemeter based on Fizeau interferometer

Wo Minzhen, Sun Haiying, Zhang Xiaofeng, Liang Peihui (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

提要:本文介绍了一种静态干涉波长计。它既适用于连续激光也适用于脉冲激 光。静态光学系统是由费佐干涉仪、单模光纤和准直光路组成。所产生的平行干涉 条纹成像于线型光电二极管列阵,再由 IBM 微机进行数据分析。实验结果表明分辨 率优于 2×10⁻⁶。

关键词: 波长计,费佐干涉仪

一、前 言

在激光光谱研究中常需要对激光波长进 行实时测量。随着可调谐染料激光器的发展, 相继出现许多形式的波长计以适应高精度、 实时测量的要求。70年代以来发展的一些 激光波长计,大多基于激光的相干性,用光 电接收元件测量相干条纹的周期。例如: 扫描球面法布里--珀罗波长计^{C13}以及F.V Kawalski等研究的动臂式迈克尔逊干涉 仪^{C21},波长测量精度可达10⁻⁷。由于这类仪 器都有运动元件,测量是在运动过程中进行 的,因此只能测量连续激光波长。还有一些 统计干涉仪相继发展起来被用于测量脉冲和 连续激光波长,例如: Sigma 波长计^{C33},它是 用全内反射的偏振棱镜代替迈克尔逊仪中的 分光板来产生 λ/4 的位相差。这种波长计精 度虽高,但其主要困难是要克服内反射偏振 棱镜引起的色差效应。多组 F-P 波长计,是 用三组不同厚度的 Fabry-Perot 干涉仪和一 个共焦球面干涉仪组成,配以列阵和计算机。 测量过程中要反复用稳定的 参考激光对每 个干涉仪进行标定。整个仪器显得过于复 杂。

本文主要介绍费佐(Fizeau)干涉仪波长 计,这种波长计最初是由美国国家标准局的 J. Snyder 在 1977 年发展起来的。由于没有 运动元件,结构简单,性能稳定,可以同样对 连续和脉冲激光波长进行实时测量。美国 (Lawrence-Livermore 国家实验室在激光 分离同位素的研究中已成功地用这种波长计 来监测脉冲染料激光的波长。

收稿日期: 1988年3月4日。

二、实验装置的光路结构

E.E

费佐干涉仪波长计的光路系统如图1所 示。由于费佐干涉仪要求波面质量较高,在 以往的设计中,激光是通过小孔滤波后进入 波长计的。这样每次测量前都必须将待测激 光和波长计的光学系统进行精心调整。本 文采用单模光纤传输。待测激光通过激光-光 纤耦合系统进入波长计,系统和外光路没有 对准要求。波长计中波面稳定性不受外光路 的影响,这在长光路传输中更有它的优越性, 不受反射镜的不稳定性、环境气流扰动等影 响。

图1 波长计光路系统

F-单模光纤; S-光纤架; M-准直反射镜; FI-费佐干涉仪; C-柱透镜; P-光二极管列阵

单模光纤输出端芯径为5μm。输出光强 为高斯分布,其束腰半径为

$$r^{2}(z) = r_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi r_{0}^{2}} \right)^{2} \right]$$
 (1)

ro 是光纤端面半径。光束衍射角

$$\Phi = \frac{2dr(z)}{dz} = \frac{2\lambda}{\pi r_0} \left/ \left(1 + \frac{\pi r_0^4}{\lambda z^2} \right)^{1/2}$$
(2)

在无穷远处的衍射角

$$\Phi_{\infty} = \frac{2\lambda}{\pi \tau_0} \tag{3}$$

光纤输出端位于准直反射镜 M 的 焦 点 处。经准直的平行光入射到费佐干涉仪上。 光电二极管列阵位于干涉仪反射光路的零剪 切面位置。在列阵前用柱透镜将列阵成像在 干涉仪的工作面上。在列阵上形成的干涉条 纹光强分布为 I(x)

$$=I_0(x)\left[1+\cos\left(2\pi\frac{x}{P}+\phi+\pi\right)\right]$$
(4)

Io(a)是光强的外包络函数。 位相项中 or 是 由于干涉仪反射出来的光束, 一束通过前表 面内反射出来, 另一束是通过后表面外反射 引起的半波位相差。 P 是条纹周期, 它是由 费佐劈的夹角决定的。

$$P = \frac{\lambda}{2 \, \mathrm{tg} \alpha} \tag{5}$$

◆是列阵零单元处条纹的位相值,它是由干涉仪上对应位置处的厚度决定的。

$$\phi = 4\pi \frac{d_0}{\lambda} - \operatorname{int}\left(4\pi \frac{d_0}{\lambda}\right) \qquad (6)$$

通过标定费佐劈的厚度和夹角,并测定 条纹的周期 P 和位相 \u03c6,就可以很精确地计 算出待测激光的波长值。

费佐干涉仪的结构如图 2 所示。二块熔 石英的玻璃板其工作面平度为 λ/20;中间石 英夹圈厚度~1mm,劈角~3'。用光胶将它 们组成费佐干涉仪,夹圈边上开一小孔。抽 真空以减少空气引起的色散影响。

图 2 费佐楔形干涉仪结构示意图

来自两工作面的波面变形在剪切干涉过 程中会引起干涉条纹的变形和位移。为了提 高波长测量的可靠性,列阵位于零剪切面位 置(如图3所示)。准直光入射角为θ,费佐干 涉仪的劈角为α,间隔为d。那么列阵到干涉 仪的距离为

. 652 .

两反射光集中到列阵某一点

$$L = \frac{d\sin 2\theta}{2\alpha} \tag{7}$$

在零剪切面位置上条纹分布对波面形状最不敏感。

二极管列阵将干涉条纹光强的空间分布 转换为时间序列信号。通过高速 A/D变换, 将数据送入计算机进行数据处理。实验所用 的列阵是 S—系列 Reticon, 1024 单元,总长 度为 1 时,每个单元宽 $25 \mu m$ 。响应灵敏度 $2.8 \times 10^{-4} \text{ C/J/cm}^2$,光谱响应范围 $250 \sim$ 1000 nm。

三、数据处理

用数字滤波方法对数字化的光强分布进 行数据处理,求得条纹的极大值、极小值的位 置。再用最小二乘法求出干涉条纹的最可几 周期和位相值。

建立奇对称的滤波函数 f(x)

$$f(x) = \begin{cases} 1 & -b \leqslant x < 0 \\ 0 & |x| > b, \ x = 0 \\ -1 & 0 < x \leqslant b \end{cases}$$
(8)

b 是滤波半宽度,考虑到外包络函数引起干 涉条纹极值点位移的影响^[43],一般取2b= 0.742P。将 f(x) 与 I(x)进行卷积

$$g(x) = f(x) \otimes I(x)$$

= $I_0 \frac{P}{\pi} \left(1 - \cos \frac{2\pi b}{P} \right) \sin \left(\frac{2\pi x}{P} + \phi \right)$
(9)

由(9)式可见: 1. 滤波后的函数 g 周期不变, 只是位相与原来光强函数差 π/2,有正有负; 2.滤波后函数的零点对应 I(x)的极值点; 3. g(x)函数的振幅为 $\frac{P}{\pi} \left(1 - \cos \frac{2\pi b}{P} \right)$, 当 b = nP时振幅为零, 即滤波函数 f(x) 的半宽度为条纹周期的整数倍时, g(x) = 0。当 $b = \left(n + \frac{1}{2} \right) P$ 时,振幅最大。

确定光强函数的极值点位置就是寻求 g(x)的零点值位置。 x 是二极管列阵上分离 的列阵单元座标。如果 $g(x_i) = g(x_{i+1})$ 反号, 即 $g(x_i) \times g(x_{i+1}) < 0$,则零点位置在 $x_i = x_{i+1}$ 之间,由线性插值,可求出 $g(x_i + \Delta) = 0$ 的位置

$$\Delta = \frac{g(x_i)}{g(x_i) - g(x_{i+1})}$$
(10)

 Δ 是小数, 记(x_i + Δ) = x_N , 得到一系列极值 点座标{ x_N }。在这些位置上光强函数的位相 满足下式

$$\frac{2\pi}{P} x_N + \phi = n\pi \qquad (11)$$

也即

$$n_N = \frac{nP}{2} - \theta \qquad (12)$$

 $e = \frac{P\phi}{2\pi}$,是以列阵单元为单位的位相小数。 由(12)式可知 x_N 与级次 n 成线性关系,其斜 率就是半周期,截距就是位相小数。用最小 二乘法处理这一系列极值点座标,得到条纹 周期和位相.

$$P = \frac{2 \cdot \left(M \sum_{N=1}^{M} N \cdot x_{N} - \sum_{N=1}^{M} N \sum_{N=1}^{M} x_{M}\right)}{M \sum_{N=1}^{M} N^{2} - \left(\sum_{N=1}^{M} N\right)^{2}}$$
$$e = \frac{\sum_{N=1}^{M} N^{2} \sum_{N=1}^{M} x_{N} - \sum_{N=1}^{M} N \sum_{N=1}^{M} N \cdot x_{N}}{M \sum_{N=1}^{M} |N^{2} - \left(\sum_{N=1}^{M} N\right)^{2}}$$

(13)

式中M是干涉条纹在列阵上的极值点个数。

四、费佐干涉仪的厚度和 夹角的标定

激光波长 λ 的精确测量是通过测量费佐

· 653 ·

干涉条纹的周期和位相来实现的。用上述数 字滤波方法及最小二乘法来测定条纹相邻极 大值或极小值之间所占的列阵单元数,以及 第一个极大值距列阵原点之间列阵单元数。 而测量的精确性最终是体现为对费佐干涉仪 的厚度和夹角的精确标定。

记费佐劈角斜率 $K = tg \alpha_{\circ}$ 用数条已知 波长的激光 $\lambda_1, \lambda_2, \dots \lambda_M_{\circ}$ 进入波长仪,测量 干涉条纹周期。由(5)式可以求出费佐干涉 仪的劈角为

$$K = \frac{1}{2M} \sum_{i=1}^{M} \frac{\lambda_i}{P_i}$$
(14)

M 是所用激光波长的个数。

厚度 do 的标定是通过测量数条已知波 长激光的费佐条纹的周期和第一个极大值距 列阵原点的距离,用位相符合法进行筛选来 确定的。

设 $λ_1$, $λ_2 \cdots \lambda_M$ 是 *M* 条已知波长的激 光。在列阵原点处的厚度应有:

$$2d_0 = (N_1 - \phi_1)\lambda_1 = (N_2 - \phi_2)\lambda_2$$
$$= \dots = (N_1 - \phi_2)\lambda_2 \tag{15}$$

 $N_1, N_2, \dots N_M$ 分别是每个波长的费佐条纹在 列阵上第一个极大值处的整数干涉级次。 $\phi_1, \phi_2, \dots, \phi_M$ 则是其相应的小数部份。

$$\phi_i = \frac{\theta_i}{P_i} \tag{16}$$

Bi是第一极大值到列阵原点的距离。

先粗略测知费佐干涉仪的间隔 d_0 ,误差 为 ± 4d。用 λ₁ 的激光射入波长计,测出其 位相值 ϕ_1 。满足(15)式第一个等式, d_0 的可 能取值有 $\frac{44d}{\lambda_1}$ 个。相邻可能值的间隔为 $\frac{\lambda_1}{2}$ 。例如 d_0 初步测得为 0.9 mm,误差为 ±0.05 mm, λ_1 =476.486 nm,那么在 0.94 ~0.85 mm 之间,符合测量位相值 ϕ_1 的 d_0 可能值有 $\frac{0.2 \times 10^3}{0.476486}$ ~420 个。对每一个 d_0 按照(15)式可以分别计算出与 *M* 个不同激 光波长相应的小数部份。

$$\phi'_{i} = \frac{2d'_{r}}{\lambda_{i}} - \operatorname{int}\left(\frac{2d'_{0}}{\lambda_{i}}\right) \qquad (17)$$

再由已知波长的 λ_2 , λ_3 ···进入波长计, 测得其 相应的小数部份 ϕ_2 , ϕ_3 ···。

建立误差函数

$$E = \sum_{i=2}^{r} (\phi_i - \phi'_i)^2$$
 (18)

找出使 B 为最小值所对应的厚度就是费佐 干涉仪在对应列阵原点处的厚度值 do。

我们用Ar⁺激光中的四根谱线来定标费佐干涉的厚度值。结果为:厚度 d_0 = 0.8636138mm, 劈角 α =2.92234′。

五、激光波长的测定

用上节所述方法标定出费佐干涉仪的厚 度 do 和劈角 a,再用数字滤波方法和最小二 乘法计算出入射激光的费佐干涉条纹的周期 P 和第一个最小值到列阵原点的距离 e 就可 以测定出入射激光的波长值。

由(5)式可以初步估计出待测波长的第 一次近似值:

$$\lambda^{I} = 2 \operatorname{tg} \alpha \cdot P \tag{19}$$

若费佐干涉仪的厚度为1mm左右,对 500nm激光的干涉级次估计在 $m = \frac{2d_0}{\lambda} \sim$ 4000级左右。因此测量时周期的读出精度 仅需达 $\frac{1}{m} \sim 2 \times 10^{-4}$ 就不会引起级次差。

用波长第一次估计值 λ₁ 来计算 出 第 二 次波长估计值 λ¹¹。如图 4 所示在列 阵 中 最 小级次的极小值位于 S₀,入射激光通过干涉 仪的前后二面反射在该点的程差刚好是波长 的整数倍。

$$2d = N \times \lambda \tag{20}$$

它可以由干涉仪的厚度 do 和干涉条 纹的 位相来确定:

$2d = 2d_0 + e \cdot tg \alpha$

那么在So点的干涉整数级次可由下式确定,

. 654 .

图 4 干涉环在列阵上的位置

$$N = \operatorname{int}\left(\frac{2d}{\lambda_1} + 0.5\right) \tag{21}$$

波长的第二次估计值

$$\lambda^{II} = \frac{2d}{N} \tag{22}$$

就是所测的入射激光波长值。波长测量精度 取决于厚度 d_0 和劈角 α 的标定精度,以及位 相 ϕ 的测量精度。

(上接第646页)

实验中,我们所使用的是多模光纤,所以 干涉条纹是调制在光纤斑纹场上的。假若改 用单模光纤,并采用基横模的 He-Ne 激光, 干涉条纹质量会更好。

另外,如果采用光纤星形耦合器代替各 个激光分束器,这种装置将会更加轻便小巧。

黄伟平、高峰、李月友同志参加大量工 作,在此谨表谢意。

(上接第672页)

$$\overline{R} = \frac{\overline{|E_4(0, t)|^2}}{|E_3(0, t)|^2} = |H_{42}(0)|^2 \frac{\overline{I_{2L}(t)}}{\overline{I_{30}(t)}}$$

根据前面的分析, E₃(z, t)的相位共轭光的时间信息, 完全由 E₂₁(t)决定, 与 E₃₀(t)无关, 这对于利用相位共轭技术实现同光路双向信

实验分别对连续激光和脉冲激光进行了 波长测量。干涉仪参数采用上节标定的值, 实验结果如表1所示。铜蒸气激光脉宽为 25 ns,,重复频率为6kC。

表1 激光波长测量结果

波长(nm)空气	测量值(nm)	相对精度
Ar+496.507	496.508	$2.0 imes 10^{-6}$
CVL 510.554	510.555	1.9×10^{-6}

参考文献

1 R. Salimbeni, Opt. Lett., 5, 39 (1980)

2 J. L. Hall et al., Appl. Phys. Lett., 29, 367 (1976)

3 P. Juncar, Opt. Commun., 14, 438 (1975)

4 M.B. Morris, Appl. Opt., 23 (21), 3862 (1984)

参考文献

- 1 余永安 et al., 仪器仪表学报, 8 (1), 77 (1987)
- 2 C. M. Davis et al., Fiberoptic Sensor Technology Handbook
- 3 李广平,国外激光,(12),1 (1984)
- 4 张志鹏,光纤传感器及其应用论文专辑,10,12 (1985)
- 5 G. Thomas et al., IEEE J. Quant. Electr, QE-18 (4),626 (1982)
- 6 V. I. Balaev et al., Sov. J. Quant. Electr. 14 (1), 5 (1984)

息传递,具有重要的意义。

参考 文 献

- 1 M. Cronin-Golomb et al., IEEE J. Quant. Electr., QE-29 (1)
- 2 N. V. Kukhtarev et al., Ferroelectrics, 22, 949 (1979)